Hypergeometrics and the Cost Structure of Quadtrees Hypergeometrics and the Cost Structure of Quadtrees Hypergeometrics and the Cost Structure of Quadtrees

نویسندگان

  • Philippe FLAJOLET
  • Gilbert LABELLE
  • Louise LAFOREST
  • Bruno SALVY
  • Philippe Flajolet
  • Gilbert Labelle
  • Louise Laforest
  • Bruno Salvy
چکیده

Several characteristic parameters of randomly grown quadtrees of any dimension are analysed. Additive parameters have expectations whose generating functions are expressible in terms of generalized hypergeometric functions. A complex asymptotic process based on singularity analysis and integral representations akin to Mellin transforms leads to explicit values for various structure constants related to path length, retrieval costs, and storage occupation. Hyperg eometriques et structure de co^ ut des arbres quadrants R esum e. Plusieurs caract eristiques fondamentales des arbres quadrants obtenus par croissance al eatoire sont analys ees. Les param etres additifs ont des esp erances dont les s eries g en eratrices s'expriment en terme de fonctions hyperg eom etriques. Un proc ed e d'analyse asymptotique com-plexe fond e sur l'analyse de singularit e et sur des repr esentations int egrales apparent ees a la transformation de Mellin conduit a des formes explicites pour diverses constantes de structure associ ees a la longueur de cheminement, au co^ ut de recherche, ou a l'occupation m emoire. Abstract. Several characteristic parameters of randomly grown quadtrees of any dimension are analysed. Additive parameters have expectations whose generating functions are expressible in terms of generalized hypergeometric functions. A complex asymptotic process based on singularity analysis and integral representations akin to Mellin transforms leads to explicit values for various structure constants related to path length, retrieval costs, and storage occupation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search Costs in Quadtrees and Singularity Perturbation

Quadtrees constitute a classical data structure for storing and accessing collections of points in multidimensional space. It is proved that, in any dimension, the cost of a random search in a randomly grown quadtree has logarithmic mean and variance and is asymptotically distributed as a normal variable. The limit distribution property extends to quadtrees of all dimensions a result only known...

متن کامل

Quadtrees for Embedded Surface Visualization: Constraints and Efficient Data Structures

The quadtree data structure is widely used in digital image processing and computer graphics for modeling spatial segmentation of images and surfaces. A quadtree is a tree in which each node has four descendants. Since most algorithms based on quadtrees require complex navigation between nodes, efficient traversal methods as well as efficient storage techniques are of great interest. In this pa...

متن کامل

Search Costs in Quadtrees and Singularity Perturbation Asymptotics

Quadtrees constitute a classical data structure for storing and access-ing collections of points in multidimensional space. It is proved that, in any dimension, the cost of a random search in a randomly grown quadtree has logarithmic mean and variance and is asymptotically distributed as a normal variable. The limit distribution property extends to quadtrees of all dimensions a result only know...

متن کامل

Amortized Analysis of Smooth Quadtrees in All Dimensions

Quadtrees are a well-known data structure for representing geometric data in the plane, and naturally generalize to higher dimensions. A basic operation is to expand the tree by splitting a given leaf. A quadtree is smooth if adjacent leaf boxes differ by at most one in height. In this paper, we analyze quadtrees that maintain smoothness with each split operation and also maintain neighbor poin...

متن کامل

Amortized Analysis of Smooth Box Subdivisions in All Dimensions

1 Quadtrees are a well-known data structure for representing geometric data in the plane, and 2 naturally generalize to higher dimensions. A basic operation is to expand the tree by splitting 3 any given leaf. A quadtree is smooth if any two adjacent leaf boxes differ by at most one in 4 height. In this paper, we analyze quadtrees that maintain smoothness with each split operation. 5 Our main r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994